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In the theory of sound, the solution of different problems of diffraction 
of sound waves at an obstacle (plane, lattice, slot, cylinder, sphere. 
ellipsoid, etc.) are studied. In this paper, the author applies the 
Poincare [ 11 method, and presents a new solution to the problem. 

1. Statement of the problem. From the theory of sound, it is known 
that in the case of harmonic motion with a time factor eiat the velocity 
potential of the sound waves satisfies the Poisson equation 

_$(I) j. k’(l) z fJ (1.1) 

and the boundary condition at the surface of the object 

Here c is the speed of sound. x is the wavelength, and n is the 
interior normal to the surface 2. A solution of Equation (1.1) is sought 
in the form 

cp = T 
-ilir’ 

,-fi (1.3) 

Here, the first term represents the velocity potential of the 
spherical waves emanating from the source E, r' is the distance of the 
studied point M from the source E, and the second term is a function of 
the disturbance caused by the waves reflected from the surface 2. Func- 
tion f is determined from the relation 
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where pa is the density of the potential sources of the reflected waves at 
the surface 8, and R is the distance between an arbitrary point of the 
surface 2 and the studied point M where the velocity potential @ is de- 
termined (Fig. 1). 

The theory of the Newtonian potential for a straight acoustic layer is 
applied here for the determination of p at the surface x It is known 

that the normal component velocity, when 
passing through the surface 2, undergoes a 
discontinuity [ 2 I, i.e. 

EZ r’ 
M 

av, av” 
-----= 2np 

ata an 

r R’ 
(1.5) 

A 

where aVe/an is the exterior normal deri- 
vative of the potential of the acoustic Y 

layer, and dV,,/dn is the direct value of B- 
the normal derivative at a point of the 

X 

surface S Fig. 1. 

For the problem studied, condition (1.5) has the following form: 

I+ ikr - P =. znr2 e 
_-ikr 

Here r is the distance of the source E from a fixed point of the sur- 
face 8. and R’ is the distance between the fixed and the variable point 
of the surface s The symbol ti denotes the angle between r and the 
interior normal to the surface 2 at the point where r is determined. 

Thus, in order to determine the function f, it is above all necessary 
to solve the integral equation (1.6) for different obstacle surfaces 2 

Z. 8olotioa of tbe integral equation for a cylindrical obstacle. 
Assume that there is an infinite cylindrical tube with a cross-sectional 
radius a. Outside the cylindrical tube, at a distance I from the axis of 
the cylinder, there exists a sound source E with a constant intensity I,,. 

Two planes containing E and tangent to the surface of the cylinder 
are formed. The part of the surface closer to the source E will be de- 
noted by (C), the other part of 
(Fig. 2). 

the surface s is denoted by (2 - Cl 

We shall prove the following statement. With an accuracy up to terms 
of the order l/ka in comparison to unity, the density p, which satisfies 
Equation (1.6). is given by the formula 
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Y 

X 
Fig. 2. 

Using 8 change of variables in 
simple transformation, the integral the integrand of (1.6) snd after a 

(1.6) reduces to the following form: 

I+ ikr 
?‘F e 

_-gkr 
cos Q on (C) (2.4) 

p=o on (Z-C) (2.21, 

For the derivation of Formula 
(2.1). we take a point A at the sur- 
face (0. For this point, we find the 
second term of the left part of 
Formula (1.6). 

ss P 
1 f ikR’ 8R’ _inR* 

Et 
li’a ane 

da = 1 i p * +i,tR’ g ,--ifiR’ da 

fct 

=ss 
1 + ikr 1+ ikR’ aR’ 

(0 
2XP 11’2 

c,os $ arc e -ik (R’fr’) da 

‘-z 
ss 

1 + ikr I+ ikR’ eeik (R’+r’) cos I# sin2 6 dR’d0 (2.3) 

(a 
21Wz 1/4@ _ R*a sina 6 

We shall show thst this integral (2.3) is small 8s compared to ka. 
and can, therefore, be neglected. For this purpose, we use the Poincare 
method, i.e. the following formula for the determination of an approxi- 
mate value of the double integral: 

(2.4) 

Here v = 6.1~3 p = oyl. the plus sign is used when v > 0 and p > 0. 
and the miius sign is used when v < 0 and p < 0. The application of 
Formula (2.4) to (2.3) yields 

1 _t ikR’ 
1/4$ __ R,a sina 0 

e-ik(R’+‘)cosII,sin2~ dRdt?=fevikrv+ 0 [(ka)-11 (1 f I< 1) 

BY neglecting this integral in comparison to &a. we obtain from 
Formula (1.6) Formula (2.1). In order to prove the statement (2.2) at 

the surface (2 - C), we show that 
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1 1 + ikR’ 3R’ -- 
“51 cs P --p--an” 

_-i,,.RPd 
G 

iv 
1 + ikr 

=-----e 2nr2 -ikr CQS jl 

Let us choose a point B on the 
surface (2 -- C) and connect it with 
point E by a straight line EB which 
intersects the surface of the 
cylinder x at point A(A < C) (Fig.31 . 

X 'Y 
Fig. 3. 

Let us construct confocal ellipsoids 
of revolution with foci at points E and B. Then one of them will neces- 
sarily be tangent to the surface of the cylinder. This point lies at the 
part of the surface (2 - Cl where p = 0. 

The equation of the surface of the cylinder in the 
AxlylzI (axis AyIll Oy lies on c, and axis AxI1 ylAzl 

with the exterior normal at point A of the surface 2) 

coordinate system 
where Az, coincides 
has the form 

(2.6) 

Instead of AxIyIzl let us take another system of coordinates Axyz 
(axis AZ coincides with the AzI-axis, axis Ay coincides with the projec- 
tion of the line EB onto the tangent plane at the point A of the surface 
2, and the axis Ax is perpendicular to the plane zAy1. 

Then the equation of the surface of the cylinder in the coordinate 
system Axyz has the form 

(Zsinp+ycosP)2+22+2nz-U (2.7) 

where B is the angle between the axes AyI and Ay. 

Then the distances of the points E and B from the arbitrary variable 
point M on the surface 2 are given by 

r2=J3M2=xJ+(y+r0c0sa)z+(z-r0sina)2 

R’2 = BMa = x2 + (y - 1’0 cos a)2 -/- (z + r,, sin a)? 
(2.8) 

where x, y, z are the coordinates of point M, 
the angle between the line EA and the tangent 
cylinder surface 2. 

BY expanding r and R’ into a Taylor series 
Formula (2.7) we find R’-+ r in the form 

r. = EA. R. = AB and a is 
plane at point A of the 

and taking into account 
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R’+r=R,+ro+ 2 ri,-/-G +-7j-sinZa “(’ I> y2 [.&++... 

Then, on the basis of Formulas (2. l), (2.4) and (2.8), the double 
integral in (1.6) is equal to 

1 +ikRo 3R’ 
c ) 

2n exp I-- ik (R, + ro)) ki f% + rd - _ 
Rc? aa .o k (RQ-l + ~~-1) sin a = 2s (& + rO)2 @OS $)B exp f- ik PO i- r0)l 

but L-- (dR’ i an), cos q. 
(~0s~))~ sin bl I z 1 

Consequently, we have for the point B: R, + r. = r. After omitting 
the index B at cos $, we have 

1 i +ikR’ aR’ 

2n PR’axe --ikR’ da =z 
ikr 

-- e-ikrcos*,__ _ e g+ikr _-kr 
2nra 25V2 co9 9 

Thus, the validity of Formula (2.5) is proven. Therefore, at the sur- 
face of the cylinder (2 - C), we have p = 0. 

3. Determination of the function f for a cylindrical obstacle. Here, 
the following assumptions have been made: 

Two tangent planes running from point E to the surface of the cylinder 
divide the space into three regions. Region I is enclosed between the 

tangent planes and tbe (C) Part of z 
the surface, region II is enclosed L# 
between the tangent planes and the 
(s - C) part of the surface. region 
III is the remaining part of the 
space, (Fig. 4). 

I. Assume that the studied point 
M lies in region I or in region III. 

Y 

Choose the origin A of a moving co- 
ordinate system Axyr. Construct con- d 

focal ellipsoids of revolution with 
Fig. 4. 

foci at points E and M. Then one of them will be tangent to the surface 
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(C) and the other will touch the surface Cc - C). It is interesting to 
look at the case when point A lies on the surface (0, since p = 0 on 

(Z - C). 

We draw two lines AE and AU from point A, which are equally inclined 
at an angle a to the tangent plane at point A of the surface s. 

Then the plane EAM passes through the normal OIA to the surface 2. Let 
us use the coordinate system Axyz (Fig. 4). An expansion of R + r into a 
Taylor series yields 

x2 1 
R+r==Ro+rO+~ z-t- 

[ ++ 
2sin u sin2 p 

a ]+ (3.1) 

+-$-[singa (&+-$-)_i- 2sinu~2B]+ . . . 

On the basis of Formulas (1.4). (2.1), (2.4) and (3. l), the function 

f is determined as follows: 

If ikr ~0~3 j=ss -337-7&-e 
_-ik(Ro+r,) exI,{-ki[~(~+~+2sina~in2p)+ 

w:) 

+$Isin2a (&+$)+ 2sina~zp}]}dc 

1 + ikro cos 90 e-~X~R,+r,~ - 2ni --- 
- 2m02 R. k 

+ $ + 2sin aasin2 P ) x: 

x e -wRo+ro) 
2Roro sin a sin2 p 

a+--- 
>( 

a sin2 a -t 
2Roro sin a co9 p --VP 

&+ ro Ro+ro 

The problem is analysed with an accuracy up to terms of the order 
l/La as compared to unity, i.e. 1 << ka. Since a < rO, then 1 << ka < kr,. 

Thus, we have 

Consequently 

1 -f- ikro - 2ni ikro - 2ni _- 
2nro 

-~--.-..-----_~ 
k - 2nro k 

(3.2) 

Since cos $e = cos(l/2 s + a) = sin a we obtain 
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,-ik( R&r,) a Jf/sin 
I 

- p A0 + ro I’ =-~ ~ (3.3) 

Using this, one can write Equation (1.1). taking into account the time 
factor eiut and the sound source intensity I,, in the following form: 

pi(n/ -k, ‘) ,i(af-kR,-kr,) 

41 -- IO --r---- - I,p 
Ro -t ro (3.5) 

II. Now we shall find function f, 
and consequently function d?, when 
point M lies in region II (Fig. 5). 

We shall show that region II is a 
sound shadow region. 

I Fig. 5. The line EA intersects the surface 
c at two points. Let us take a point 
A that lies on the (C) part of the 

cylinder surface. Then relative to this moving point we construct a co- 
ordinate system A xyz. as shown in Fig. 5. An expansion of R + r into a 
Taylor series yields then 

(3.6) 

On the basis of Formulas (1.4). (2.1). (2.4) and (3.6) function f be- 
comes 

j _ I;\, i’el; (fS. = \\ !Lk$ GOSa,“-z!Fp 
c cd, 

,--ik( R,+ 1’0) e--ik(R,+ro) I 

1 -+ dir,, - 2ni 
7: 3 cm l/lo -nrO Ro k (Ro-ml+ roeI) sin c1 = - R, + r. = - 

.c;: (3.7) 

Here. we assume that RO + rO = r’ 

tion of Equation (1.1) then becomes 

,,i(ot- k,,‘) 

for the studied point M. The solu- 

&o/-W) 
(I, = lo ~__--~ - 

1.’ --I0 ---- =- 1.’ 
0 (3.8) 

Thus, one can apply with an accuracy up to the order O(l/ka) the 
approximate asymptotic formulas (3.5) and (3.8) for the computation of 
the velocity potential for short sound waves in the case of a cylindrical 
obstacle. 
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E 

n 
Fig. 7. 

4. Solution of Equation (1.1) in the case of various obstacles. When 
applying Sections 2 and 3 of this paper to various obstacles, we obtain 
outside the shadow region 

p-kr’) ei(ot-kR,-kr,) F 

CD :.~ I, 7- - 
PI0 - R, -i_ r0 - (4.1) 

M 
where p is determined as follows: 

For a sphere (Fig. 6) 

I/sins’ 
p _--_ -____ (4.2) 

sin cf + 1 i- 
2Roro 

-- 
n (R,-t- ro) ‘Ina ! 

Fig. 8. 

For a cone (Fig. ‘7) in regions I and II, respectively 

p = 0, p = sin p ! 1+ 
2Rorosin p co9 f3‘ --‘!z 
n (R, + ro) sin a, ) 

For a Plane (Fig. 8) 

p = sin fi 

In the shadow region @= 0 for all above-mentioned obstacles. 

(4.3) 

(4.4) 
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